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Abstract

Accurate beat-wise ECG segmentation is critical for ex-
tracting clinically relevant biomarkers such as QT and
TpeakTend intervals. However, traditional methods often
struggle with precision in the presence of morphological
variability and signal drift. We present an Enhanced Two-
Dimensional Warping (E2DW) framework that extends the
original 2DW algorithm through two key innovations: dy-
namic template adaptation, which employs drift detection
to continuously update beat templates in response to evolv-
ing morphology, and multi-point grid alignment, which
generalizes the warping process via a vectorized multi-
point optimization strategy. Evaluated on the QT Database
and a full-night clinical sleep study, E2DW outperformed
wavelet-based methods and the baseline 2DW in segmen-
tation accuracy, robustness, and computational efficiency.
These results demonstrate reliable beat-by-beat segmenta-
tion of long ECG recordings, underscoring E2DW’s po-
tential as a high-fidelity tool for both clinical and research
applications.

1. Introduction

Accurate segmentation of the electrocardiogram (ECG)
to identify fiducial points at the beat level is critical for
clinical diagnostics and automated cardiovascular analy-
sis. The resulting features, including heart rate variability
and QT interval variability measures, support applications
such as arrhythmia detection [1, 2], repolarization studies
[3, 4], and drug safety evaluation [5]. However, their pre-
cision and accuracy are often compromised by segmenta-
tion errors, especially in recordings with high morpholog-
ical variability or significant noise, hindering research that
rely on accurate beat-to-beat ECG intervals and limiting
the utility of automatic ECG analysis applications in clini-
cal settings [6].

Among recent advances, two-dimensional warping
(2DW) has emerged as a promising approach for high-
accuracy ECG segmentation [7]. In 2DW, each beat is

aligned to a pre-annotated template by permitting defor-
mations along both the time and amplitude axes, yielding
a flexible mapping of waveform morphology. Once align-
ment is achieved, fiducial points on the template are di-
rectly transferred to the processed beats. This dual-axis
formulation enhances sensitivity to subtle morphological
changes that are critical for biomarkers, such as the QT
and TpeakTend intervals [8].

Despite its advantages, the practical deployment of
2DW for ECG segmentation faces two main challenges.
First, the selection of a representative beat template in dy-
namic or ambulatory settings is not trivial. ECG beat mor-
phology can change due to physiological, pathological, or
sensor-related changes, hence a static template can quickly
become obsolete (Fig. 1). Second, 2DW’s computational
cost scales poorly with the recording length and optimiza-
tion complexity, making real-time implementation difficult
without significant trade-offs in precision or speed.
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Figure 1. Representative ECG beats at different times
showing morphology changes over the recording.

To address these limitations, we propose an Enhanced
Two-Dimensional Warping (E2DW) framework that ex-
tends the original 2DW method with two key innovations:
(1) adaptive template generation using concept drift detec-
tion, and (2) a vectorized multi-point optimization strategy
for 2DW that improves alignment accuracy while reduc-
ing computation time. Together, these enhancements im-
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prove segmentation precision and efficiency. We bench-
mark E2DW against wavelet-based and original 2DW al-
gorithms, demonstrating superior performance.

2. Methods

2.1. Two-Dimensional Warping

Two-dimensional warping (2DW) is a signal alignment
technique that has shown promise for ECG segmentation.
In 2DW, the objective is to transfer expert-labeled fidu-
cial points from a reference beat template to each beat in
a continuous ECG recording [7]. A reference beat anno-
tated with landmarks such as the QRS onset, R peak, and
T wave peak is represented as the template T (t), while
each incoming beat serves as the target X(t). The template
is embedded on a two-dimensional grid G, whose control
points can be moved along both temporal and amplitude
axes, allowing G to undergo smooth, nonrigid deforma-
tions that generate a warped version of the template, Tw(t).
The alignment problem is then formulated as the search for
the optimal grid configuration {P ∗

i,j} that minimizes the
misalignment between the warped template Tw(t) and the
target beat X(t):

{P ∗
i,j} = arg min

{Pi,j}
C ({Pi,j};T,X) ,

where C(·) is a cost function, typically chosen as the
squared Euclidean distance,

C =

N∑
i=1

(Tw(ti)−X(ti))
2
,

with {ti}Ni=1 denoting the sampling points after tempo-
ral deformation. Once the optimal mapping is found, fidu-
cial points from the template are projected onto the target
beat. This enables a segmentation process that is flexible,
morphology-aware, and robust to beat-to-beat variability.
Efficient implementations typically employ dynamic pro-
gramming over the deformable grid [7], with continuity
and monotonicity constraints on the temporal component
to preserve signal coherence.

Although 2DW achieves high accuracy, its reliance on a
static template makes it vulnerable to morphological drift,
and its computational cost limits real-time applicability.

2.2. Enhanced Two-Dimensional Warping

Enhanced Two-Dimensional Warping (E2DW) extends
2DW with dynamic template adaptation and multi-point
grid alignment, allowing continuous tracking of morpho-
logical drift and simultaneous optimization of multiple
control points. These innovations improve segmentation

precision, robustness, and computational efficiency for
long-term ECG analysis.

2.2.1. Dynamic Template Adaptation

A major challenge in ECG segmentation with 2DW
is morphological drift, where the waveform shape grad-
ually evolves due to physiological variations, pathologi-
cal events, or measurement artifacts (Fig. 1). To address
this, E2DW employs a dynamic template adaptation mech-
anism that updates the reference template whenever signif-
icant morphological drift is detected.

Initial Template Construction - The initial template is
derived from the first M beats, aligned on their R-peaks.
A preliminary template is obtained by averaging the nor-
malized beats, after which cosine similarity is used to re-
tain the top 50% most similar beats. These beats are re-
averaged to form the final reference template T (t), which
is semi-automatically annotated at the points of interest
based on consensus across multiple open-source [9] and a
proprietary segmentation algorithm [10] and subsequently
manually verified.

Drift Detection - Morphological drift is monitored by
measuring the weighted cosine similarity Sn between each
incoming beat Xn(t) and the current template T (t):

Sn =

∑
i wi Ti Xn,i√∑

i wi T 2
i ·

√∑
i wi X2

n,i

,

where wi emphasizes diagnostically relevant regions of
the beat waveform (e.g., Q onset, ST segment, T wave).
Similarity scores are tracked in a rolling buffer and a new
template is generated if (i) the proportion of beats whose
similarity score is above a threshold falls below θsim, or
(ii) a statistically significant shift is detected using an
ADWIN-inspired test [11].

Template Update - When drift is confirmed, a new tem-
plate is constructed from the most recent M beats. By de-
fault, it is annotated by aligning to the most similar previ-
ous template using 2DW. If the alignment error exceeds a
defined threshold, the semi-automatic procedure described
for the initial template construction is applied.

2.2.2. Multi-Point Grid Alignment

E2DW aligns the template to each beat by jointly adjust-
ing multiple grid control points through a vectorized and
parallelized search, rather than optimizing them individu-
ally as in 2DW. This coordinated adjustment captures com-
plex local deformations in waveform morphology, improv-
ing alignment accuracy, robustness, and computational ef-
ficiency.
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Problem Formulation - Let a grid cell P be defined by
four control points {pi}4i=1, spanning a normalized domain
(x, y) ∈ [0, 1]× [0, 1]. A template signal T is embedded in
this domain by n samples with positions (xk, yk). When
the control points are displaced to {p′i}, the domain un-
dergoes a geometric transformation mapping (xk, yk) to
(x′

k, y
′
k). The warped signal Tw is obtained by interpo-

lating T at the transformed coordinates, and the alignment
problem is to find {p′i} that minimizes the dissimilarity be-
tween Tw and the target beat X .

Vectorized Implementation - The mappings from nor-
malized to deformed coordinates are implemented as fully
vectorized bilinear interpolations. Each candidate con-
figuration {p′(k)i }4i=1 is applied in a batch over the fixed
sampling grid {(xj , yj)}nj=1, producing warped signals

{T (k)
w }Kk=1. This tensorized formulation enables high-

throughput evaluation across large sets of candidate defor-
mations and generalizes to grids of arbitrary resolution.

3. Experiments and Results

We evaluated E2DW on two datasets: the QT
Database [12], to assess segmentation sensitivity, ro-
bustness, and computational efficiency, and ECG record-
ings from polysomnographic study of patients undergoing
chronic methadone therapy [5], to demonstrate clinical ap-
plicability.

3.1. Evaluation on the QT Database

The QT Database contains 104 two-lead ECG record-
ings of about 15 minutes each, with expert annotations for
at least 30 seconds per record [12]. We used 97 records
with complete annotations and evaluated segmentation on
a single lead, focusing on Q onset, T end, and QT interval
detection.

Performance was measured by: (1) sensitivity, the per-
centage of beats with both Q onset and T end successfully
segmented; (2) robustness, the standard deviation of abso-
lute segmentation errors; and (3) runtime efficiency, mea-
sured as mean processing time per beat on an Apple M2
8-core processor.

E2DW was evaluated using four configurations of the
multi-point grid alignment method, in which the optimiza-
tion simultaneously displaced 1, 2, 3, or 4 grid points
at a time. Performance was compared against the base-
line 2DW [7] and two wavelet-based methods (CWT,
DWT) [9]. Table 1 compares segmentation accuracy, and
Table 2 compares runtimes among the tested methods.

Results show that wavelet methods had the lowest sen-
sitivity and highest errors, while 2DW improved accuracy
(86.1%) but was slower. E2DW achieved higher robust-
ness, with the 1- and 2-point configurations providing real-

Table 1. Segmentation performance on the QT Database.
Sensitivity (S, percentage of beats with both Q onset and
T end successfully segmented) and standard deviation of
absolute errors (Error) are reported.

Method S (%) Error (ms)
Q onset T end QT

CWT 68.62 37.70 205.63 206.58
DWT 77.80 16.36 38.88 39.55
2DW 86.12 4.56 11.61 11.74
E2DW (1-point) 86.09 4.53 9.20 9.17
E2DW (2-point) 86.19 4.62 9.61 9.73
E2DW (3-point) 86.24 2.42 10.79 10.19
E2DW (4-point) 86.00 2.58 10.60 10.02

Table 2. Runtime per beat on the QT Database.

Method Time (s) Speed vs.
2DWMean SD

CWT 0.017 0.001 13.82
DWT 0.192 0.003 1.22
2DW 0.235 0.059 1.00
E2DW (1-point) 0.071 0.013 3.31
E2DW (2-point) 0.070 0.013 3.36
E2DW (3-point) 0.127 0.026 1.85
E2DW (4-point) 0.839 0.176 0.28

time suitability (0.070 s/beat), and the 3-point configura-
tion offering the best balance between accuracy and effi-
ciency.

3.2. The Methadone Sleep Study

To demonstrate the clinical applicability of E2DW, we
analyzed ten overnight single-lead ECG recordings from
patients undergoing chronic methadone therapy [5]. ECG
segments were processed using dynamic template adapta-
tion and three-point grid alignment. The amplitude of each
beat was normalized to unit norm before feature extrac-
tion. The derived metrics included conventional cardiac
markers, including heart rate, SDNN (standard deviation
of normal-to-normal beats, QTc (Bazett), QTVI (beat-to-
beat QT variability index), and TpeakTend, as well as T-
wave morphology descriptors, namely amplitude, asym-
metry (TstartTpeak/TpeakTend), downslope, and area un-
der the T-wave. Table 3 summarizes the extracted features.

The conventional measures are consistent with the pre-
vious report [5]. By adding the beat-to-beat morphological
measurements across long overnight recordings, E2DW
provides a multidimensional view of repolarization dy-
namics from single-lead ECGs.

These results demonstrate E2DW’s ability to extract sta-
ble, high-fidelity ECG features from complex clinical data,
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Table 3. Heart rate, QT, and T-wave metrics during sleep
in methadone-treated patients (N=10).

Variable Mean SD
Heart rate (bpm) 64.71 8.13
SDNN (ms) 36.20 30.21
QTc (Bazett, ms) 432.73 23.28
QTVI -0.307 0.74
TpeakTend (ms) 89.15 17.57
T-amplitude (a.u.) 0.020 0.018
T-asymmetry 1.34 0.34
T-downslope 1.03 0.62
T-area (a.u.) 11.28 6.11

establishing a strong methodological foundation for future
studies of repolarization dynamics and arrhythmia risk in
high-risk populations.

4. Conclusions

We presented the Enhanced Two-Dimensional Warping
framework, which extends the original 2DW method with
dynamic template adaptation and multi-point grid align-
ment. Evaluations on the QT Database and a clinical sleep
study demonstrated that E2DW improves segmentation ac-
curacy, robustness, and computational efficiency compared
to wavelet-based approaches and the baseline 2DW algo-
rithm. The multi-point grid alignment enhanced the lo-
calization of Q-onset and T-end fiducial points, with the
three-point configuration providing the best trade-off be-
tween accuracy and efficiency. Dynamic template adap-
tation further enabled reliable long-term tracking by mit-
igating morphological drift, supporting accurate QT and
T-wave analysis across extended ECG recordings.
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